LinearAlgebra.solve_cholesky

zum Lösen von linearen Gleichungssystemen

Funktionsübersicht
.add.sub.mult.transpose.vector_norm.matrix_norm.norm.cond.identity_matrix.zero_matrix.diagonal_matrix.tridiagonal_matrix.random_matrix.lu.qr.cholesky.hessenberg.bidiagonalize.qr_tridiagonal.qr_hessenberg.invert.det.eigenvalues.svd.solve.solve_backward.solve_upper_triangular.solve_forward.solve_lower_triangular.solve_tridiagonal.solve_lu.solve_qr.solve_cholesky.solve_cg.solve_jacobi.solve_gauss_seidel.row_sum_condition.column_sum_condition.sassenfeld_condition.get_number_of_iterations
Beschreibung
Die Funktion besitzt folgende Argumente:
AQuadratische Matrix, d.h. zweidimensionales Array
bVektor, d.h. eindimensionales Array
Es wird das Gleichungssystem unter Verwendung einer Cholesky-Zerlegung gelöst, wobei A als symmetrisch und positiv definit vorausgesetzt wird. Das Ergebnis wird als Vektor zurückgegeben. Falls das Gleichungssystem nicht lösbar ist oder keine Cholesky-Zerlegung von A existiert, wird ein entsprechender String mit der Fehlerursache zurückgegeben.
Beispiel
Es wird ein Gleichungssystem mit einer symmetrischen und positiv definiten Matrix gelöst. Das Ergebnis wird entsprechend ausgegeben.
Vorschau aktualisieren